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Abstract

Power laws are common in economic phenomena, such as the size of cities and firms. When they
occur, these power laws can cause estimates of economic quantities to have extremely different variances
when those quantities are observed at an aggregate level (for example, at the city or firm level). I show
that in general, estimators based on observations exhibiting this extreme heteroskedasticity may not be
consistent or asymptotically normal, and may have unreliable confidence intervals. In fact, these problems
can occur even when no heteroskedasticity is present in the original data if estimates are obtained using
weighting (such as by city or firm size). I propose new estimators for these contexts to help in determining
the extent of extreme heteroskedasticity in the data, forming more accurate estimates, and performing
more reliable inference.
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1 Introduction

As documented by Gabaix (2009, 2016) and others, power laws are common in economic phenomena, from

city and firm size to stock markets, income, and wealth. These power laws generally indicate that the variable

of interest A, over some range, has a cumulative distribution of

P (A > x) = kx− 1
s (1)

for some parameters k and s. This relationship approximately holds with s = 1 for the population of

cities (see, for example, Eeckhout (2004) and Rozenfeld et al. (2011)) and for the size of firms (see, for

example, Axtell (2001)). If n units are drawn from the power law shown in Equation 1, a “rank-size” rule

approximately applies, where unit t is the t-ranked unit by At (often a size):

At ≈ A1t
−s (2)
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Villacorta, and seminar participants at Stanford University.
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Research has helped illuminate the cause of these power laws, and some econometric research has explored

how to estimate the parameter s based on observational data. However, what has not been noted is the po-

tential for these power laws to create an extreme form of heteroskedasticity. Unlike usual heteroskedasticity,

this extreme heteroskedasticity can cause standard econometric tools, such as ordinary and weighted least

squares (OLS and WLS, respectively), to fail to provide consistent estimation or inference.

To understand how such extreme heteroskedasticity can come about, consider an economic system of

At units it within T groups t, where At follows a power law with parameter s. (For simplicity, assume

that t = 1 indicates the largest group, t = 2 the second largest, and so on.) Now, consider a model where

yit = θ+ ϵit for some parameter θ, with ϵ = ηit+νt.
1 Suppose that the error terms {ηit}, {νt} are mean-zero

and mutually independent, with identical variances for each error term (though possibly different variances

between them): V [ηit] = ση for all it, and V [νt] = σν for all t. Now, suppose that we wish to estimate θ,

but only the group-wide average yt is observed, where

yt =
1

At

At∑
i=1

yit. (3)

As an example, to make this more concrete, θ may be is underlying ability on a test, which is equal for all

individuals. However, when taking the test, individuals’ scores may vary from θ for two reasons: first, due

to random variation at the individual level (because the test is not perfect, so there is measurement error);

and due to factors that vary at the city level and affect test scores, such as the education system. Scores are

only observed by the econometrician as an average at the city level.

We now define

ηt ≡ A
1
2
t

1

At

At∑
i=1

ηit, (4)

so that {ηt} are homoskedastic with variance V [ηt] = ση. Setting A1 = 1 (without loss of generality, as a

change in ση results in the same equation), we can now write

ϵt = A
− 1

2
t ηt + νt ≈ t−

s
2 ηt + νt. (5)

In this case, observations of the largest groups will be much smaller variances than observations of the smallest

groups. I show that this extreme heteroskedasticity can lead standard estimates of θ to be inconsistent, or

to have incorrect asymptotic inference.2 This can even be the case if ση = 0—that is, if there is no actual

heteroskedasticity at all in the original data—if the econometrician assumes there is and uses WLS (or if

WLS is used for any other reason). The weighting involved in WLS induces extreme heteroskedasticity in

the data.

1Under reasonable regularity conditions, the problems encountered and techniques developed will likely be similar for other
general method of moment estimators. For ease of exposition, however, I will study this simple environment.

2If the group size only approximately obeys a power law, the following propositions can be used as approximations to the
true behavior of the estimators, or guidelines for how to prove (lack of) convergence for actual population of interest.
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I show these properties as conditions on the parameter s, where higher s indicates more extreme het-

eroskedasticity. I focus on the case of s = 1, because that is a common parameter (holding for cities and

firms, for example), and because it is a particularly problematic one: for many of the propositions below,

s = 1 is an edge case between consistency and the lack thereof. In this case, even if consistency holds for

s = 1, estimates may converge very slowly to their probability limits, which can also cause problems in

practice, where sample sizes are not infinite.

The remainder of this paper proceeds as follows. Section 2 discusses OLS estimation, while Section 3

discusses WLS estimation. Section 4 discusses how the analysis may differ with alternative asymptotics.

Section 5 presents potential solutions when extreme heteroskedasticity arises. Section 6 concludes.

2 Standard unweighted parameter estimates

Often, a researcher will attempt to estimate θ as an unweighted mean,

θ̂uw ≡ 1

T

T∑
t=1

yt = θ +
1

T

T∑
t=1

(
t
s
2 ηt + νt

)
. (6)

This unweighted estimate may be made, for example, if the functional form of the heteroskedasticity (the

“population” in this example) is not known a priori. However, this unweighted estimator may not be

consistent or asymptotically normal. In fact, under general conditions, a necessary and sufficient condition

for θ̂uw
p→ θ is that s < 1.

Proposition 2.1. Suppose θ̂uw is defined as in Equation 6, where ηt and νt are mean-zero, independently

distributed, and homoskedastic with finite variances σ2
η and σ2

ν , respectively. If s < 1, then θ̂uw
p→ θ. If

additionally {η2t } and {ν2t } are each uniformly integrable; σ2
η > 0; and s ≥ 1; then θ̂uw ̸ p→ θ.

Proof. (Convergence if s < 1) Using Chung (1974), Theorem 5.4.1, Corollary i (p. 125), a sufficient condition

for θ̂uw
p→ θ is that

lim
T→∞

T∑
t=1

1

t2
E
[(
t
s
2 ηt + νt

)2]
< ∞. (7)

(In fact, this is sufficient for almost sure convergence.) Because ηt and νt are independent and have mean

zero, we have

lim
T→∞

T∑
t=1

1

t2
E
[(
t
s
2 ηt + νt

)2]
= lim

T→∞

{
σ2
η

T∑
t=1

ts−2 + σ2
ν

T∑
t=1

t−2

}
. (8)

The sum on the left converges if s < 1, and the sum on the right always converges. To see this, note that by

the definition of an integral as the sum of the area under a curve, for p < −1,

T∑
t=1

tp ≤ 1 +

∫ T−1

1

tpdt =
1

p+ 1
(T − 1)p+1 +

p

p+ 1
. (9)
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Figure 1: Variance of the OLS estimator: V
[
θ̂uw

]
=

σ2
η

T2

∑T
t=1 t

s +
σ2
ν
T
. Variance is shown as sample size increases,

with various values of s, setting σ2
η = 1 and σ2

ν = 0. Additional data is assumed to be added from most accurate to
least accurate. If s < 1, the variance converges to 0; if s = 1, the variance converges to a constant; and if s > 1, the
variance grows without bound.

Proof. (Non-convergence if s ≥ 1) Using the methodology from the proof above, it is clear that the average

of the νt terms converges. Thus a sufficient condition for non-convergence of θ̂uw is non-convergence of the

average of the t
s
2 ηt terms.

Setting σ2
ν = 0 for convenience, we have V

[
θ̂uw

]
= σ2

η
1
T 2

∑T
t=1 t

s. Thus for s = 1, we have V
[
θ̂uw

]
→ C

for some constant C; and for s > 1, we have V
[
θ̂uw

]
→ ∞. In either case, if θ̂uw

p→ θ, then by Slutsky we

would have
(
V
[
θ̂uw

])− 1
2
(
θ̂uw − θ

)
p→ 0. But by Proposition 2.3, below (which does not use this result),(

V
[
θ̂uw

])− 1
2
(
θ̂uw − θ

)
d→ N(0, 1), a contradiction.

Thus the unweighted estimator will not generally be consistent if s ≥ 1. In fact, as shown in Figure 1, for

s > 1, each additional observation actually makes the estimator worse. Even with s = 1, having an infinite

number of observations leads to an estimator with about the same variance as if there are two observations

with s = 0 (that is, errors are homoskedastic).

However, if both η2t and ν2t are uniformly integrable, then θ̂uw will be asymptotically normal for any s.

For this proof, I will use the following lemma, which will also be used later in this paper. It may also be

useful in applying these results to populations that do not obey a power law. (It is simple enough that it

probably exists in some book, but I can’t find it.)

Lemma 2.2. Suppose {ϵt} are mean-zero, independently distributed, homoskedastic random variables with

finite variance σ2
ϵ . Further, suppose {ϵ2t} are uniformly integrable, and that there is some function g(T ) such
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that, for all T , g(T ) ̸= 0; and a function f(t) such that

lim
T→∞

sup
t≤T

f(t)2∑T
s=1 f(s)

2
= 0. (10)

Define XTt ≡ g(T )f(t)ϵt; ST ≡
∑T

t=1 XTt; and s2T ≡
∑T

t=1 V [XTt]. Then ST

sT

d→ N(0, 1).

Proof. It is sufficient to prove that the Lindeberg condition applies with the assumptions above. That is, for

all c > 0, we must prove that

L ≡ lim
T→∞

T∑
t=1

∫
X2

Tt

s2T
I
[
X2

Tt

s2T
≥ c

]
dP = 0. (11)

Note that s2T = σ2
ϵ

∑T
t=1 g(T )

2f(t)2. All g(T ) functions thus cancel out from Equation 11. Define α(t, T ) ≡(
f(t)2

cσ2
ϵ

∑T
s=1 f(s)2

)−1

, and α(T ) = inft≤T α(t, T ). Then

L =
1

σ2
ϵ

lim
T→∞

1∑T
t=1 f(t)

2

T∑
t=1

f(t)2
∫

ϵ2t I
[
ϵ2t ≥ α(t, T )

]
dP

≤ 1

σ2
ϵ

lim
T→∞

1∑T
t=1 f(t)

2

T∑
t=1

f(t)2
∫

ϵ2t I
[
ϵ2t ≥ α(T )

]
dP

≤ 1

σ2
ϵ

lim
T→∞

sup
t

∫
ϵ2t I
[
ϵ2t ≥ α(T )

]
dP

=
1

σ2
ϵ

lim
α→∞

sup
t

∫
ϵ2t I
[
ϵ2t ≥ α

]
dP = 0. (12)

The first inequality is by definition of α(T ); the second inequality is from noting that the term is a convex

combination of the positive-valued integrals; the final line’s first equality is from noting that limT→∞ α(T ) =

∞ by the assumption in Equation 10 and using the fact that f(t)2 ≥ 0; and the final equality is from the

assumption of uniform integrability. (Note that the first equality of the final line is only an equality on the

condition that the second limit converges; but it does by assumption, so it works.)

Proposition 2.3. Suppose θ̂uw is defined as in Equation 6, where ηt and νt are mean-zero, independently

distributed, and homoskedastic with finite variances σ2
η and σ2

ν , respectively; and that {η2t } and {ν2t } are

uniformly integrable. Then g(T )
(
θ̂uw − θ

)
d→ N (0, 1) for some function g(T ).

Proof. First, note that θ̂uw−θ =
∑T

t=1
1
T t

s
2 ηt+

∑T
t=1

1
T νt. I will prove that each term converges to a normal

distribution; the sum of independent normals is normal, so the sum also converges to a normal distribution.

Using Lemma 2.2, I only need to prove that, for s ≥ 0,

lim
T→∞

sup
t≤T

ts∑T
s=1 t

s
= 0. (13)

Note that for s ≥ 0, we have
∑T

t=1 t
s ≥

∫ T

0
tsds = 1

s+1T
s+1, so the limit in Equation 13 is limT→∞(s +
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1)T−1 = 0.

Thus we know that
(
V
[
θ̂uw

])− 1
2
(
θ̂uw − θ

)
d→ N (0, 1). However, we do not know V

[
θ̂uw

]
a priori. Thus

to perform inference, we must find some feasibly estimated V̂ such that V̂
(
V
[
θ̂uw

])−1 p→ 1; using Slutsky,

we can then show that V̂ − 1
2

(
θ̂uw − θ

)
d→ N (0, 1).

If s ≥ 1, the estimates themselves will not converge, so the standard proof that heteroskedasticity-robust

standard errors are consistent does not go through. In fact, if ηt and νt have finite kurtosis, then these

estimated standard errors will indeed be consistent.

Proposition 2.4. Define ϵ̂t ≡ yt − θ̂uw, and V̂ ≡ 1
T 2

∑T
t=1 ϵ̂

2
t . As above, suppose that θ̂uw is defined as in

Equation 6, where ηt and νt are mean-zero, independently distributed, and homoskedastic with finite variances

σ2
η and σ2

ν , respectively. If, additionally, ηt and νt have uniformly bounded kurtosis; then V̂

V[θ̂uw]
p→ 1.

Proof. If σ2
η = 0, then this is a standard OLS estimator, so clearly standard errors are consistent. If σ2

η > 0,

then the ηt term dominates both the variance of the estimator, and estimated variance; for simplicity, I will

therefore only consider this term.

For estimated variance, we have

ϵ̂t =t
s
2 ηt −

1

T

T∑
i=0

i
s
2 ηi (14)

ϵ̂2t =tsη2t − 2t
s
2 ηt

1

T

T∑
i=1

i
s
2 ηi +

(
1

T

T∑
i=1

i
s
2 ηi

)2

(15)

V̂ =
1

T 2

T∑
t=1

tsη2t −
1

T

(
1

T

T∑
t=1

t
s
2 ηt

)2

(16)

Now, note that the true variance is given by V
[
θ̂uw

]
= σ2

η
1
T 2

∑T
t=1 t

s. From Proposition 2.3, we know

that (
σ2
η

1

T 2

T∑
t=0

ts

)− 1
2
(

1

T

T∑
t=1

t
s
2 ηt

)
d→ N(0, 1). (17)

Thus (
σ2
η

1

T 2

T∑
t=0

ts

)−1(
1

T

T∑
t=1

t
s
2 ηt

)2

d→ χ2, (18)

and so 1
T times this

p→ 0 by Slutsky. I therefore only need to show that

(
V
[
θ̂uw

])−1
(

1

T 2

T∑
t=1

tsη2t

)
=

(
σ2
η

1

T 2

T∑
t=1

ts

)−1(
1

T 2

T∑
t=1

tsη2t

)
p→ 1, (19)
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which I will do by showing that it has expectation 1 and variance converging to 0. Clearly,

E

(σ2
η

1

T 2

T∑
t=1

ts

)−1(
1

T 2

T∑
t=1

tsη2t

) = 1. (20)

Defining κ4
η ≡ supt V[η2t ], which exists by assumption, we also have that

V

[
1

T 2

T∑
t=1

tsη2t

]
≤ κ4

ηT
−4

T∑
t=1

t2s, (21)

and thus

V

(σ2
η

1

T 2

T∑
t=1

ts

)−1(
1

T 2

T∑
t=1

tsη2t

) ≤
κ4
η

σ4
η

(
T∑

t=1

ts

)−2( T∑
t=1

t2s

)

≤
κ4
η

σ4
η

(∫ T

0

tsds

)−2(∫ T+1

0

t2sds

)
=

κ4
η

σ4
η

(s+ 1)2

2s+ 1
(T s+1)−2(T + 1)2s+1

=
κ4
η

σ4
η

(s+ 1)2

2s+ 1

(
T + 1

T

)2s+1

T−1 → 0, (22)

where the inequality between summation and integration is because ts is increasing in t.

3 Standard weighted parameter estimates

In empirical work, researchers often weight using population weighting. That is, they estimate

θ̂pw ≡ 1∑T
t=1 popt

T∑
t=1

poptyt. (23)

With the same assumptions as above on the structure of the error term, this becomes

θ̂pw = θ +
1∑T

t=1 t
−s

T∑
t=1

(
t−

s
2 ηt + t−sνt

)
. (24)

As noted by Solon et al. (2015), there are many possible reasons to use weighting. One justification is

that, if the errors are only due to measurement error (i.e., νt = 0), then this estimator will be equivalent to

GLS, and will thus be efficient. However, we still my not have consistency; and furthermore, the weighted

estimate may not be asymptotically normal or have consistent standard errors.

Under reasonable regularity conditions, a necessary and sufficient condition for consistency is that s ≤ 1.

Proposition 3.1. Suppose θ̂pw is defined as in Equation 24, where ηt and νt are mean-zero, independently

distributed, and homoskedastic with finite variances σ2
η and σ2

ν , respectively, at least one of which is non-zero.

Then θ̂pw
p→ θ if and only if s ≤ 1.
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Proof. (Convergence if s ≤ 1) Clearly, E
[
θ̂pw

]
= θ. I will prove that V

[
θ̂pw

]
→ 0, which is sufficient. We

then have

V
[
θ̂pw

]
=σ2

η

(
T∑

t=1

t−s

)−1

+ σ2
ν

(
T∑

t=1

t−s

)−2 T∑
t=1

t−2s

≤σ2
η

(∫ T

t=1

t−sdt

)−1

+ σ2
ν

(∫ T

t=1

t−sdt

)−2(
1 +

∫ T

t=1

t−2sdt

)
=σ2

η(1− s)
(
T 1−s − 1

)−1

+ σ2
ν(1− s)2

(
T 1−s − 1

)−2
(
1 +

1

1− 2s
(T 1−2s − 1)

)
→0, (25)

with a similar expression if s = 1 (in which case the integral for t−s becomes a logarithm); or if s = 1
2 (in

which case the integral for t−2s becomes a logarithm).

Proof. (Non-convergence if s > 1) Note that
∑T

t=1 t
−s → C for some constant C. Now, define Xlim ≡

C−1 limT→∞
∑T

t=1

(
t−

s
2 ηt + t−sνt

)
. (In fact, Xlim will be a non-degenerate random variable with finite

variance, but I need not prove that here.) We now have that θ̂pw
p→ θ + C−1(η1 + ν1) + Xlim. Note that

V
[
C−1(η1 + ν1) +Xlim

]
= C−1(σ2

η + σ2
ν) + V[Xlim] > 0, where no covariance is needed by independence.

Thus θ̂pw does not converge to a constant.

Some caution should be taken in understanding the lack of convergence of the ηt term. This is because

the ηt terms themselves often come from a measured variable, which might be quite accurate due to the

law of large numbers. In fact, if the values of yt are measured as described above, then the WLS estimate

is numerically identical to the mean of all observations in all cities; so if the only error is idiosyncratic,

rather than at the city level, then the law of large numbers may approximately apply to this error. Lack of

convergence is therefore more interesting and useful for the νt term.

Despite the lack of convergence for the weighted estimator, it has some properties that are desirable. As

shown in Figure 2, adding more observations always improves the accuracy (as measured by the variance

of the estimator). In fact, if σ2
η = 1 and σ2

ν = 0, then this weighted estimator is GLS, so θ̂pw is also the

best linear unbiased estimator, in the mean-square sense. Note that this means that there does not exist a

consistent (linear) estimator of θ.

In addition to the lack of convergence, the weighted estimator will often fail to be asymptotically normal.

The following lemma, a partial converse of Lemma 2.2, will be useful in proving this.

Lemma 3.2. Suppose {ϵt} are mean-zero, independently distributed, homoskedastic random variables with

finite variance σ2
ϵ > 0. Further, suppose there is some function g(T ) such that for all T , g(T ) ̸= 0; and a
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(a) Setting σ2
η = 1 and σ2

ν = 0
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(b) Setting σ2
η = 0 and σ2

ν = 1

Figure 2: Variance of the WLS estimator: V
[
θ̂pw

]
= σ2

η

(∑T
t=1 t

−s
)−1

+ σ2
ν

(∑T
t=1 t

−s
)−2 ∑T

t=1 t
−2s. Variance is

shown as sample size increases, with various values of s. Additional data is assumed to be added from most accurate
to least accurate. If s ≤ 1, the variance converges to 0; if s > 1, the variance converges to a constant.

finite-valued function f(t) > 0 such that

lim
T→∞

f(1)2∑T
t=1 f(t)

2
= C2 (26)

for some finite constant C > 0. Define XTt ≡ g(T )f(t)ϵt; ST ≡
∑T

t=1 XTt; and s2T ≡
∑T

t=1 V [XTt]. Then

ST

sT
is not generally asymptotically normal, in the sense that, for all t, holding fixed the distribution of {ϵk}

for k ̸= t, there is at most one distribution of ϵt for which ST

sT

d→ N(0, 1).

Proof. First, note that all g(T ) expressions cancel out from ST

sT
, so they will be ignored. Next, note that

s∞ ≡ limT→∞sT is finite, or else Equation 26 would not hold. Because of this,
(

ST

sT
− ST

s∞

)
p→ 0 by Slutsky;

so I will prove the above proposition about ST

s∞
. We now have that

ST

s∞
=(s∞)−1f(t)ϵt + (s∞)−1

T∑
k ̸=t

f(k)ϵk

=C
f(t)

f(1)
ϵt + (s∞)−1

T∑
k ̸=t

f(k)ϵk. (27)

Define ϕA as the characteristic function of (s∞)−1
∑T

k ̸=t f(k)ϵk; ϕt as the characteristic function of ϵt; and

ϕN as the characteristic function of a standard normal random variable. If ST

s∞

d→ N(0, 1), then ϕt is uniquely

defined by

ϕt (x) =
ϕN

(
f(1)
Cf(t)x

)
ϕA

(
f(1)
Cf(t)x

) . (28)

This may not be a valid characteristic function; if it is not, then there is no distribution of ϵt that would
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lead to asymptotic normality.

Essentially, this lemma says that convergence to a normal distribution will only occur under very specific

conditions (for example, if all terms are already normal). The following proposition shows that this lemma

applies to the weighted estimator for certain values of s.

Proposition 3.3. Suppose θ̂pw is defined as in Equation 24, where {ηt} and {νt} are mean-zero, indepen-

dently distributed, uniformly integrable, and homoskedastic with finite variances σ2
η and σ2

ν , respectively, with

at least one strictly greater than zero. If s ≤ 1
2 , then θ̂pw is asymptotically normal (with suitable normaliza-

tion). If 1
2 < s ≤ 1, then θ̂pw is generally (in the sense of Lemma 3.2) asymptotically normal if and only if

σ2
η > 0. If s > 1, then θ̂pw is generally not asymptotically normal in the sense of Lemma 3.2.

Proof. Asymptotic normality of θ̂pw will depend on the normality of the sum
∑T

t=1

(
t−

s
2 ηt + t−sνt

)
, where

the normalization term can be dropped for the same reason as the g(T ) term is dropped in Lemma 3.2.

Combining Lemma 2.2 and Lemma 3.2, and because supt≥1t
−s = 1, a necessary and sufficient condition for

(general) normality of the ηt term is that
∑T

t=1 t
−s → ∞, i.e. that s ≤ 1; and for (general) normality of the

νt term is that
∑T

t=1 t
−2s → ∞, i.e. that s ≤ 1

2 . Furthermore, if 1
2 < s ≤ 1 and σ2

η > 0, then the variance of

the ηt term goes to ∞, while the variance of the νt term goes to a constant; thus, after normalization, the

νt term disappears, and we are only left with the ηt term, which is asymptotically normal.

The extent to which the central limit theorem fails to apply in this case is shown in Figure 3. This

figure shows excess kurtosis for various values of s. Excess kurtosis gives us a rough understanding of the

weight on the tails of the distribution, which determines the extent to which p-values based on a normal

approximation will be accurate (assuming accurate standard errors). When the central limit theorem applies,

excess kurtosis will converge to 0, the value for a normal distribution. However, for s = 1, excess kurtosis

of the νt term with an infinite amount of data is approximately equal to excess kurtosis where s = 0 (i.e.,

homoskedasticity) and 3 data points. Thus if we do not think that the sum of 3 homoskedastic variables will

be sufficiently normal to perform robust inference, we should not think that the sum of an infinite number

of s = 1 extreme heteroskedastic errors will lead to a sufficiently normal estimator.

One important note is that, although the distribution of the ηt term may fail to be generally normal,

it may in fact be close to normal. This is due to the fact that the ηt terms themselves often come from a

measured variable, which might be approximately normal due to the central limit theorem. (This is related

to the note, above, that consistency for the ηt term is somewhat misleading.) As with consistency, the result

of a lack of asymptotic normality is more interesting and useful for the νt term.

Of course, asymptotically, non-normality with 1
2 < s ≤ 1 only occurs when σ2

η = 0, because the ηt term

dominates the error otherwise. However, it is possible that σ2
η will be non-zero, but small enough that the

{νt} terms will dominate the error for the finite number of observations we have. In this case, it is likely

that the asymptotics based on σ2
η = 0 will come closest to approximating the true distribution.
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(b) Setting σ2
η = 0 and σ2

ν = 1

Figure 3: Excess kurtosis of the WLS estimator: E
[
θ̂4pw

]
− 3

(
V
[
θ̂pw

])2

. Excess kurtosis is shown as sample size

increases, with various values of s. Additional data is assumed to be added from most accurate to least accurate.
When the central limit theorem applies, excess kurtosis converges to 0, the value for a normal distribution. In both
graphs, excess kurtosis of each η or ν is assumed to be 1. For panel (a), the ηt term, excess kurtosis converges to 0
if and only if s ≤ 1; for panel (b), the νt term, excess kurtosis converges to 0 if and only if s ≤ 1

2
. In all other cases,

excess kurtosis converges to a constant.

A final question is whether standard errors will be consistent–that is, whether V̂

V[θ̂pw]
p→ 1, where V̂ is

the standard heteroskedasticity-robust standard errors. Where the estimator is asymptotically normal, this

is clearly an important question, as outlined above. If the estimator is non-normal, even perfect standard

errors should be interpreted cautiously, as the usual interpretation of standard errors as indicating p-values

is based on (asymptotic) normality. Still, correctly-estimated standard errors could at least give an idea of

the dispersion of the distribution of the estimator.

In fact, standard errors may not be consistent either. The true variance of the weighted estimator is

11



shown in the first line of Equation 25. To estimate the variance, however, the standard equations lead to

ϵ̂t ≡Yt − θ̂pw = t
s
2 ηt + νt −

(
T∑

k=1

k−s

)−1 T∑
k=1

(
k−

s
2 ηk + k−sνk

)
ϵ̂2t =

(
t
s
2 ηt + νt

)2
+ 2

(
t
s
2 ηt + νt

)( T∑
k=1

k−s

)−1 T∑
k=1

(
k−

s
2 ηk + k−sνk

)
+

(
T∑

k=1

k−s

)−2( T∑
k=1

(
k−

s
2 ηk + k−sνk

))2

V̂ ≡

(
T∑

t=1

t−s

)−2 T∑
t=1

t−2sϵ̂2t

=

1 +

(
T∑

t=1

t−s

)−2( T∑
t=1

t−2s

)( T∑
t=1

t−s

)−2 T∑
t=1

(
t−

s
2 ηt + t−sνt

)2
+ 2

(
T∑

t=1

t−s

)−3( T∑
t=1

(
t−

s
2 ηt + t−sνt

))( T∑
t=1

(
t−

3s
2 ηt + t−2sνt

))
(29)

The random variable V̂

V[θ̂pw]
will have a complicated distribution even for seemingly simple {ηt} and {νt}.

Defining Hn(T ) ≡
∑T

t=1 t
n (and suppressing the argument for simplicity), we have that

E

 V̂

V
[
θ̂pw

]
 =1 +H−2

−sH−2s

+ 2H−1
−s

(
σ2
ηH−s + σ2

νH−2s

)−1 (
σ2
ηH−2s + σ2

νH−3s

)
. (30)

This expectation, for various sample sizes and with different values of s, is shown in Figure 4. The

expected value only converges to 1 if s ≤ 1. Future work involves proving that the variance of V̂

V[θ̂pw]
is

bounded by assuming finite fourth moments, and that the variance goes to 0 if s ≤ 1, which should prove

that V̂

V[θ̂pw]
p→ 1 if and only if s ≤ 1, but that will require a lot of algebra. I will do this at a later date.

Interestingly, because Hn > 0 for all n, this expectation will be greater than 1 for all s. Thus standard

errors will, on average, overestimate the variance. However, because V̂

V[θ̂pw]
is a random variable with nonzero

dispersion even in the limit, standard errors may still understate the variance often enough to cause problems.

Simulations, to be completed later, will demonstrate when this can occur.

12
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(a) Expectation of standard errors of the WLS estimator, set-
ting σ2

η = 1 and σ2
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(b) Expectation of standard errors of the WLS estimator, set-
ting σ2

η = 0 and σ2
ν = 1.

Figure 4: Expectation of standard errors of the WLS estimator, minus 1: E
[

V̂

V[θ̂pw]

]
− 1. Expectation is shown as

sample size increases, with various values of s. Additional data is assumed to be added from most accurate to least
accurate. In both panels, expectation converges to 1 if and only if s ≤ 1. In all other cases, the expectation converges
to a constant greater than 1.

4 Alternative asymptotics

Suppose we now assume that the least accurate observation’s variance is held fixed. In other words, the

error term of Equation 5 will be rewritten as

ϵt =

(
popt
popT

)− 1
2

ηt + νt =

(
t

T

) s
2

ηt + νt, (31)

This formulation is a valid description of the data; for any given sample size, it is equivalent to Equation 5,

but with a different value for σ2
η.

In this formulation, the unweighted estimator will be consistent. The unweighted estimator is now

θ̂uw ≡ 1

T

T∑
t=1

yt = θ +
1

T

T∑
t=1

((
t

T

) s
2

ηt + νt

)
(32)

To see that this is consistent, note that the variance of the (unbiased) estimator is given by

V
[
θ̂uw

]
=E

( 1

T

T∑
t=1

(
t

T

) s
2

ηt + νt

)2
 = σ2

η

1

T 2

T∑
t=1

(
t

T

) s
2

+
1

T
σ2
ν

≤σ2
η

1

T 2

T∑
t=1

1 +
1

T
σ2
ν =

1

T

(
σ2
η + σ2

ν

)
→ 0. (33)

However, it remains true that, for s > 1, the unweighted estimator would be more efficient if only the most

accurate observation is used. It is simply that each observation becomes arbitrarily accurate as sample size

13



increases.

The weighted estimator is now given by

θ̂pw ≡ 1∑T
t=1

(
t
T

)−s

T∑
t=1

(
t

T

)−s

yt =
1∑T

t=1 t
−s

T∑
t=1

t−syt

=θ +
1∑T

t=1 t
−s

T∑
t=1

(
1

T
s
2
t−

s
2 ηt + t−sνt

)
(34)

Note that the νt term in this expression is the same as in Equation 24; thus, all results from above for the νt

term in the weighted estimator will remain valid. Focusing instead on the ηt term, we see that it converges;

if σ2
ν = 0, then

V
[
θ̂pw

]
=T−sσ2

η

(
T∑

t=1

t−s

)−1

→ 0 (35)

(36)

because T−s → 0 for all s > 0, and
(∑T

t=1 t
−s
)−1

is bounded (and goes to 0 if s = 0).

Results for asymptotic normality of the ηt term will not change. The extra T
s
2 will function as the g(T )

term in Lemma 2.2 and Lemma 3.2, and therefore will not affect the conclusions.

Results on standard errors for the ηt term will also not be affected, as the extra T
s
2 will factor out of

V̂

V[θ̂pw]
if νt = 0.

There are, of course, infinite other asymptotic assumptions that agree with any finite amount of data,

many of which would lead to consistent, asymptotically normal estimators with consistent standard errors.

For example, if we assume that the errors in all remaining observations will be homoskedastic, then of course

the usual assumptions apply and estimators are consistent, asymptotically normal, and have consistent

standard errors. Simulations may be the best guide to understanding which asymptotic assumptions come

closest to approximating the truth. In addition, the figures in this paper are all based on small-sample

statistics; so the conclusions reached by looking at them remain valid for any asymptotic assumptions.

5 Potential solutions

5.1 Imperfect solutions

One intuitively attractive option would be to use a resampling method (such as bootstrapping) to estimate

confidence intervals. Using resampling methods to estimate standard errors would not be useful; the problem

here is not inconsistently estimated standard errors, but the fact that standard errors are not meaningful.

Resampling to estimate confidence intervals, however, would not be a valid resolution to this problem. The

validity of resampling is based on the assumption that a sample of the population has similar properties to
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the whole. In these cases, however, a very small number of observations are leading to a large amount of

the variance; thus the behavior of an estimator in a sample may depend strongly on the composition of that

sample.

A second potential solution would be to estimate the variance of the error terms, then estimate the result

with FGLS. This solution is similar to the one proposed below, and is generally valid if the initial estimator

is consistent. A standard method of estimating the variance of the error terms would be to use OLS, noting

that

E
[(
t
s
2 ηt + νt

)2]
= tsσ2

η + σ2
ν , (37)

where ση ≡ E
[
η2
]
and σν ≡ E

[
ν2
]
. We might then naively regress the initial residual squared (assumed

to be consistent for the error squared) on a constant and ts. However, such a regression would not always

be consistent, for two reasons. The first is that one of the regressors grows unboundedly, so that the X ′X

matrix is not invertible in the limit, so standard asymptotic assumptions do not apply. The second reason

is that the error terms of this regression may also display extreme heteroskedasticity for many values of s.

5.2 QML procedure

One potential new estimator of the parameter of interest and of the variance of the error terms that may

have better properties than OLS or WLS (and, indeed, may be optimal in some sense). We can estimate

(θ̂, σ̂2
η, σ̂

2
ν) as those values that maximize the log-likelihood, assuming normality:

L =

T∑
t=1

[
−1

2
log
(
pop−1

t σ̂2
η + σ̂2

ν

)
− 1

2

(yt − θ̂)2

pop−1
t σ̂2

η + σ̂2
ν

]
(38)

Based on simulations, this estimator performs better than OLS or WLS under a range of values for

the nuisance parameter. Figure 5 shows the root mean squared error of OLS and WLS relative to QML

under a wide range of values for heteroskedasticity, while Figure 6 shows the actual size of estimated 95%

confidence intervals, where those intervals are estimated with a variety of techniques. However, there is no

reason to believe that it is consistent, and more work is still needed to determine how to use this estimator

to perform accurate inference. Solving this problem (or, indeed, creating any procedure that can generate

valid inference) is the main theoretical issue still needed in this project.

5.3 Using the original data to estimate heteroskedasticity

Another potential solution may be possible if more data is available. In particular, consider the original

example, where each observation represents a city. If we have the individual-level data that was used to

estimate city-wide averages, we could potentially estimate the variance on the city-wide estimates, thus

allowing us to estimate ση/σν and perform consistent inference. More work is needed, though, to show the

properties of such an estimator. More work is also needed in understanding the way that power laws can
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Figure 5: Each graph shows the root mean squared error of estimators relative to QML for s = 1. Each point
includes 10,000 simulations of an estimate based 1,000 observations where ηt is Gaussian and νt is exponential.

Heteroskedasticity is defined by h = Φ
(

1
2
log2

(
ση/σν

R

))
, where R2 is the variance ratio that would cause V

[
θ̂OLS

]
=

V
[
θ̂WLS

]
, and Φ(.) is the CDF of a normal distribution.
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techniques. For WLS, standard errors can be estimated using the standard method, or with a bootstrap technique,
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, where R2 is the variance ratio that would cause V

[
θ̂OLS

]
= V

[
θ̂WLS

]
, and Φ(.) is the CDF

of a normal distribution.

16



affect estimation based on observation-level data.

6 Concluding remarks

Power laws occur frequently in economic applications. The size of firms and cities approximate obey power

laws, and many other systems do as well. If accuracy of observations is related to size—or if the econome-

trician estimates parameters assuming it is—then the variance of observations will also obey a power law.

Traditional least squares tools can lead to inconsistent estimators and unreliable inference if this extreme

heteroskedasticity is present.

In practice, this may be a particular concern for studies that use observations at the level of cities or

firms, where size obeys Zipf’s law (that is, a power law with s = 1). In this case, OLS estimates will not

generally converge to the truth; instead, the variance of the estimator converges to a non-zero constant. On

the other hand, the WLS estimator will converge to the parameter of interest, but slowly, because s = 1

is an edge case: if s = 1 + ϵ for any ϵ > 0, then the WLS estimator does not converge, even for ϵ → 0.

Additionally, WLS for s = 1 can cause particular problems with inference if the actual heteroskedasticity

is small; for example, if we weight by city size, but estimates are just as accurate for small as large cities

(this can occur if estimates are not based on a survey where each person is equally likely to appear). In this

case, asymptotic normality no longer holds in general. In fact, estimated standard errors are only consistent

for the true standard deviation of the estimator as an edge case; it is not true if s > 1. Because of this,

estimated confidence intervals will no longer have the correct size.

Two procedures are outlined that may be able to address this problem: a QML procedure, and a procedure

using the original data to estimate the extent of the heteroskedasticity. More work is needed, though, to

understand the properties of these estimators. Further research is also needed to understand where extreme

heteroskedasticity may have lead to incorrect inference in real-world studies. As researchers find more

examples of systems that obey power laws across economic domains, it is important to account for extreme

heteroskedasticity in estimates and inferences based on these systems.
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